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COMMENT 

Action and pseudocharge of an electromagnetic wave 

K R Brownstein 
Department of Physics and Astronomy, University of Maine, Orono, ME 04469, USA 

Received 5 December 1984 

Abstract. The action s and pseudocharge q of an electromagnetic wave are defined by 
2s = 5 ( E .  E - B .  B )  d4x and 4 = -1 ( E .  B )  d4x. Both s and 4 are shown to vanish for an 
electromagnetic wave (in free space) which is spatially bounded at some time t = 0. 

The action s and pseudocharge q of an electromagnetic wave can be defined by 

s = ;  ( E . E - B * B ) d 4 x  (1) I 
and 

q = -  ( E * B ) d 4 x  I 
in units where c = 1. Recently, Khare and Pradhan (1982a) constructed a free-space 
electromagnetic wave (based on an example of Chu and Ohkawa (1982)) which had 
non-zero s and non-zero q. Although their development was technically flawed and 
subsequently altered, Khare and Pradhan (1982b, 1983) maintained their assertion of 
the existence of a free-space electromagnetic wave with non-zero s and q. 

The essence of the example of Khare and Pradhan hinges upon the k = 0 behaviour 
of the Fourier decomposition of their vector potential A(x,  t) .  Their Fourier coefficient 
C ( k )  is singular in the manner of 1/ k 2  near k = 0. As pointed out by Michel (1984), 
this corresponds to simply superposing uniform static E and B fields. 

Thus the question seemingly remains open: does there exist a bona fide example 
of an electromagnetic wave in free space which has non-zero s or q? The purpose of 
this comment is to answer the question in the negative. 

Let E ( x ,  t )  and B(x,  t )  be solutions of the free-space Maxwell equations. We shall 
assume that these fields are spatially bounded at t = 0 (and hence at all finite times): 
note that this does not imply that the vector potential A(x, t )  is spatially bounded. As 
for the integrations in (1) and (2) we may, in view of the spatially bounded fields, 
regard the d 7  = d3x integration as being over all space and the d t  integration as running 
from t = T, to t = T, with the limits T,  + --CO and T2 + +-CO applied last. 

We choose a gauge in which the scalar potential vanishes; thus E = -dA/dt and 
B = V x A.  Using these relations and the Maxwell equation V x B = aE/a t ,  the following 
identity is readily established: 

(3 )  
I a’ 
2 a t  

E *  E - B .  B = - V  * (A X B ) + -  ? ( A *  A). 
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When this is substituted into ( l ) ,  the divergence term integrates to zero in view of the 
fact that B (though not necessarily A )  is spatially bounded. The action s becomes 

s =1 11 -$(A.  A )  d7 dt  = M (  T 2 ) - M (  T , )  
4 

where 

(4) 

For s to have a well-defined meaning we must assume that the right-hand side of (4) 
is independent of TI (provided it is large and negative) and independent of T2 (provided 
it is large and positive). Since 1 ( A  A )  d7 > 0 we must have that M (  T2) > - 0 for otherwise 
1 ( A  A )  d 7  would become negative for some t > T2. A similar argument shows that 
M (  TI) s 0. From (4) we then have that 

s z o .  (6) 

E ‘  = E cos( e )  - B sin( e )  ( 7 0 )  

B’ = B cos( 6)  + E sin( e). ( 7 b )  
This preserves the Maxwell equations as well as the spatial boundedness of the fields. 
Using ( l ) ,  (2) and ( 7 )  one finds that 

Now consider a duality transformation with ‘rotation parameter’ 8 :  

s ’=scos(28)+qs in(28)  (80)  

q’=4cos(28)-ss in(28) .  ( 8 b )  
Choosing 6 = +T yields 

s f  = -s s 0. ( 9 )  

Equation (6), however, applies equally well to s‘. A contradiction then ensues unless 
s = s’ = 0. With s = s’ = 0, a similar argument using 6 = trr leads to 4 = 4’ = 0. 

In summary, we have shown that if the electromagnetic fields ( E  and B )  are spatially 
bounded and if the expressions in (1) and (2)  have a well-defined meaning, then both 
s and q must be zero. 

The author is indebted to R A Morrow and J S Hutchison for several discussions, 
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